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ABSTRACT: Given the intrinsic relation between phase behavior and performance in applications
involving polymer mixtures, the thermodynamics of these systems has been the common focus of a wide
body of experimental and theoretical studies. An elusive goal in this research field has been the ability
to predict or simulate the degree of thermodynamic compatibility of two distinct homopolymers based on
pure component properties alone. In an attempt to address this need, we present a simple model for the
free energy of mixing of compressible polymer blends, based on a modification of the regular solution
model. Its ability to qualitatively capture the phase behavior of weakly interacting polymer pairs using
only the pure component properties of mass density, solubility parameter, and thermal expansion
coefficient is demonstrated. To this end, a wide range of blend chemistries is considered, spanning purely
dispersive polyolefin systems to those comprising more polar components, such as poly(methyl meth-
acrylate), poly(ε-caprolactone), and polycarbonate. The thermodynamic and molecular origin of the observed
phase behavior for each of the systems studied is also discussed.

Introduction

Control over bulk thermodynamics is a key to success
in most applications involving multicomponent poly-
meric materials such as blends and block copolymers.
Yet, despite the great attention this subject has re-
ceived, the ability to predict the thermodynamics of a
given homopolymer pair based on pure component
properties only remains an unsolved problem in polymer
science. Particularly disturbing is the lack of simple
thermodynamic tools that can serve as accurate guides
in the design of new functional multicomponent poly-
meric compositions and chemistries with tunable ther-
modynamic behavior. This is especially discouraging
considering the remarkable progress recently made in
the area of polymer synthetic chemistry, which has
facilitated the preparation of new macromolecules of
countless architectures or compositions.

Two major features distinguish the thermodynamics
of polymer mixtures in comparison with their small
molecule analogues. First, the dramatically reduced
combinatorial entropy upon mixing two macromolecules
together typically results in mutual immiscibility in the
absence of favorable enthalpic interactions between the
two unlike segments. Consequently, most polymer
mixtures form homogeneous phases only at extremely
high temperatures or upon the addition of a common
solvent. Second, and perhaps more interestingly, while
most small molecule mixtures and alloys undergo phase
separation primarily upon cooling through an upper
critical solution transition (UCST) (Figure 1a), macro-
molecular mixtures are known to also undergo, in some
instances, phase separation upon heating through a
lower critical solution transition (LCST) as shown in
Figure 1b.1,2 The experimental observation of this
inverted coexistence curve is also a direct consequence
of the reduced combinatorial entropy of mixing in

polymer mixtures. Under these circumstances, ad-
ditional entropic factors otherwise negligible and arising
from differences in the pure component pressure-
volume-temperature (P-V-T) properties govern the
free energy of mixing at elevated temperature and
destabilize the mixture. This has been shown by several
authors using equation-of-state (EOS) theories3-11 such
as the Prigogine-Flory theory3-5 and the Sanchez-
Lacombe lattice fluid model.6,12

The thermodynamics of polymer solutions and mix-
tures was first analyzed independently by Flory13,14 and
Huggins,15,16 who derived, within a rigid lattice frame-
work, the following regular solution model for the free
energy of mixing per unit volume, ∆gmix, for two distinct
homopolymers A and B or a polymer A and a solvent B
(NB ) 1):

where φi is the volume fraction and Ni the number of
segments of volume vi for molecules i, v is the average
segmental volume (vAvB)1/2, and øFH is the so-called
Flory-Huggins interaction parameter. In eq 1, the first
two terms represent the minute (∼1/Ni) entropy gain
on mixing polymers A and B on the same lattice, while
the last term represents the usually unfavorable en-
thalpic contribution to the free energy. The interaction
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Figure 1. Schematic illustration of (a) UCST and (b) LCST-
type phase diagrams.
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parameter øFH is related to the excess exchange interac-
tion energy ∆ε according to eq 2:

where z is the lattice coordination number and εij is the
segmental attractive (<0) nearest-neighbor van der
Waals interaction energy between segments i and j. The
Flory-Huggins theory is a mean field formalism that
assumes the system to be incompressible. It defines ø
as being inversely proportional to temperature and
independent of pressure, composition, molecular weight,
and chain architecture. From the free energy expression
given in eq 1, the well-known spinodal condition for
phase separation in a symmetric blend (φA ) φB ) 0.5
and νΑ ) νΒ) can be derived:

which reduces to øc
FHN ) 2 when NA ) NB ) N. Hence,

according to the F-H incompressible regular solution
model, the thermodynamics of the system at fixed Ni’s
is dictated by a single parameter: øFH, or, equivalently,
∆ε. Attempts have been made to predict this quantity
from pure component properties only, without requiring
the fitting of any blend-specific adjustable parameter
from experimental data. To this end, the well-known
Berthelot’s mixing rule that assumes εAB, the cross-
interaction energy, to be the geometric average of the
pure component interaction energies εAA and εBB:

has typically been used.17 The pure component interac-
tion energy εii is in turn related to the experimental
Hildebrand solubility parameter δ, which is the square
root of the cohesive energy density and has units of
(energy1/2/volume1/2). According to the regular solution
theory,17 which further assumes an average segmental
volume v ) xvAvB for the cross-interactions, øFH scales
with the difference in individual component solubility
parameters as

Pure component solubility parameters can either be
determined experimentally from homopolymer P-V-T
data18 or calculated empirically using group contribution
methods,19 which evaluate homopolymer properties
based on the contribution of each chemical group
present in the repeat unit. When used in combination
with the Hildebrand solubility parameter formalism, the
Flory-Huggins regular solution model can thus serve
to predict the degree of thermodynamic compatibility
and phase behavior of weakly interacting polymer pairs
from pure component properties. The underlying as-
sumptions are (1) no volume changes on mixing, (2)
ideal entropy of mixing, (3) weak forces of the induced
dipole type (dispersive interactions), and (4) Berthelot’s
rule for the cross-interaction energy (eq 4). Such a
formalism implies the interaction parameter øFH, purely
enthalpic in nature, is always positive and monotoni-
cally decreases with increasing temperature (UCST-type

phase behavior), and miscibility only occurs when the
solubility parameters of the individual components are
of similar magnitude.

In practice, however, experimental investigation of
phase behavior of polymer blends and solutions has
revealed major deviations from the predictions of the
F-H regular solution model. First, effective ø values
extracted from small-angle neutron scattering (SANS)
studies on blends and block copolymers using the
random phase approximation (RPA)20 are typically not
purely enthalpic in nature, but rather display a tem-
perature dependence of the type

where B is the enthalpic term related to ∆ε, and the
constant term A is given an entropic origin. Note that
in some cases this entropic contribution has been found
to account for more than half the effective ø value.21-23

Second, apparent deviations from a geometric average
for the cross-interaction energy εAB have been reported
for several polymer mixtures and solutions.24,25 Finally,
and perhaps most importantly, the F-H incompressible
model fails to predict phase separation upon heating
through the inverted miscibility gap (LCST), which has
been systematically observed for miscible or marginally
miscible polymer mixtures and solutions.1,2 A straight-
forward thermodynamic analysis of LCST-type phase
behavior shows that both the enthalpy and entropy
changes upon demixing at elevated temperatures must
be positive.26 In other words, the LCST, in contrast to
the classical enthalpically driven UCST, results from
an increase in entropy at high temperatures in the
phase-separated state compared to the miscible state.26

Moreover, phase separation upon heating through the
LCST is always accompanied by a finite volume expan-
sion, which explains the systematic pressure depen-
dence reported for this transition.27-29 In short, high
pressures favor the denser miscible state, thereby
raising the cloud point temperature. In contrast, pres-
sure leads to either an increase30 or decrease31 of the
phase separation transition temperature in UCST-type
systems, depending on the sign of the change in volume
upon mixing ∆Vmix. The incompressible F-H theory
equally fails to predict these important effects of pres-
sure on polymer blend compatibility.

The wide body of experimental data on extracted ø
values and phase behavior in polymer blends and
solutions has led to the development of several theoreti-
cal treatments extending the classical Flory-Huggins
theory to account for compressibility, pressure effects,
and phase separation upon heating. To this end, numer-
ous equation-of-state (EOS) theories32 have been devel-
oped which express the equilibrium density of homopoly-
mers and mixtures as a function of pressure and
temperature and further provide an expression for the
change in free energy upon mixing compressible fluids.
Examples of these compressible thermodynamic treat-
ments include the general corresponding states theory
of Prigogine and collaborators,3 and its modification by
Flory, Orwoll, and Vrij,4 the Sanchez-Lacombe lattice-
fluid model,6,25,26,33 the lattice cluster theory of Dudowicz
and Freed,7 the continuous space EOS of Hino and
Prauznits,8 and the Born-Green-Yvon lattice model of
Lipson and co-workers.9-11 These more rigorous ther-
modynamic treatments have all shown that, in addition
to the relative magnitude of the solubility parameters
δ, dissimilarities in the EOS properties of the pure
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øc
FH ) 1

2( 1
NA

1/2
+ 1

NB
1/2)2

(3)

εAB ) xεAAεBB (4)

øFH ) v
kT

(δA - δB)2 (5)

ø ) A + B/T (6)

Macromolecules, Vol. 34, No. 6, 2001 Weakly Interacting Polymer Blends 1895



components, manifest in the variation of homopolymer
densities with temperature and pressure, play an
important role in determining thermodynamic compat-
ibility in polymer blends and solutions. Unfortunately,
while these compressible theories clearly present an
improved description of polymer thermodynamics com-
pared to the F-H theory, the price for this increased
rigor is an apparent loss of predictive capability and
greater mathematical complexity. So far, their use as
simple thermodynamic tools for phase diagram predic-
tion has thus been very limited.

Aware of the necessity for such a tool, we recently
derived a simple model for the free energy of mixing of
weakly interacting polymer blends and solutions that
extends the classical regular solution model to account
for thermal expansion.34 Albeit less rigorous than the
compressible theories developed to date, this model has
the benefit of depending only on the pure component
properties of mass density, solubility parameter, and
thermal expansion coefficient, which are either available
in the literature or can be readily calculated or simu-
lated. We recently illustrated its use by predicting, at
least qualitatively, spinodal curves for a series of
polystyrene/poly n-alkyl methacrylate blends.34 In this
paper, the model is further applied to a much wider
range of blend chemistries spanning polyolefin mix-
tures, characterized by segmental interactions of a
purely dispersive nature, to mixtures containing more
polar components such as polycarbonates, poly(ethylene
oxide), polycaprolactone, etc. The ability to qualitatively
predict the phase behavior of each of these systems is
illustrated and discussed. In the following section, we
first summarize the derivation of the free energy
expression.

I. Compressible Regular Solution Model

To proceed, we consider the mixing of nA and nB
chains of two compressible homopolymers A and B,
comprising NA and NB segments of hard core (zero
kelvin, zero pressure) volume vA and vB, respectively.
At this assumed hard core state, the total volumes
occupied by each pure component, Vi,hc, and the mixture,
Vhc, are simply given by

According to the definition of reduced properties typi-
cally used in EOS theories,32 the actual volumes Vi, i )
A, B, occupied by the pure compressible fluids at any
temperature T and pressure P are related to the hard
core volumes through the reduced densities F̃A and F̃B,
respectively:

where Fi is the T- and P-dependent mass density and
Fi* ) Mu,i/N0vi is the hard core density, given by the
ratio of the segment molecular weight Mu,i (g/mol) and
hard core volume (N0 is Avogadro’s number). The
reduced density F̃i is simply a measure of the fractional
occupied volume or, equivalently, one minus the “frac-
tional free volume” in the compressible fluid. Likewise,
the total volume V occupied by the mixture at T and P

is related to the mixture reduced density F̃ and the total
hard core volume Vhc:

where F and F* are the mixture density and hard core
density, respectively.

In keeping with the spirit of the well-known Flory-
Huggins theory, we consider the change in Gibbs free
energy upon mixing, ∆Gmix, to arise from the changes
in combinatorial entropy and interaction energy. As
suggested early on by Hildebrand35 and Flory,14 the
change in combinatorial entropy upon mixing two
compressible components A and B should scale with the
logarithms of the ratios of the “free volume” available
in the mixture, Vf,m, to those in the pure components,
Vf,A and Vf,B:

The free volume of component i, Vf,i, is simply given
by the difference between the total volume Vi at T and
P and the hard core volume Vhc,i and can thus be related
to the reduced densities as follows:

Inserting these relations into eq 10 yields the following
expression for the change in combinatorial entropy on
mixing, upon simplifications:

where φi is the volume fraction of component i defined
as Vi/(VA + VB). In this definition, we have made use of
the approximation V ≈ (VA + VB), since VA + VB differs
from V only by the small quantity ∆Vmix, typically on
the order of 10-4V.

Equation 12 gives a simple expression for the com-
binatorial entropy gain upon mixing for a binary
compressible mixture. It consists of two terms: the
classical (incompressible) combinatorial entropy, which
scales with the logarithms of the volume fraction of each
component, and a second term that arises from com-
pressibility and is related to the difference in free
volume between the mixture and the pure components.
Hence, if component i undergoes a contraction upon
mixing, in which case (1 - F̃)/(1 - F̃i) < 1, this will
contribute a negative term to the entropy of mixing
which destabilizes the mixture in comparison to the
incompressible limit.

Still keeping with the spirit of the F-H theory and
assuming random mixing (mean field approximation),
an equally simple expression can be derived for the
change in interaction energy upon mixing. In the
pure state, the total interaction energy is obtained
by counting the number of pairwise interactions of

Vi,hc ) niNivi

Vhc ) nANAvA + nBNBvB (7)

F̃i(T,P) )
Vhc,i

Vi
)
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Vi
)
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Vhc

V
)

nANAvA + nBNBvB

V
) F
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(9)

∆Scomb/k ) nA ln(Vf,m

Vf,A
) + nB ln(Vf,m

Vf,B
) (10)

Vf,i ) Vi - Vhc,i ) (1 - F̃i)Vi (11a)

Vf,m ) V - Vhc,A - Vhc,B ) (1 - F̃)V (11b)

∆Scomb/k ) -[nA ln φA + nB ln φB] +

[nA ln( 1 - F̃
1 - F̃A

) + nB ln( 1 - F̃
1 - F̃B

)] (12)
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type A-A and B-B. Herein, this is done in terms of
hardcore cohesive energy densities δi,0

2 ) -(1/2)(zεii/vi)
(energy/vol):

where εii is the attractive (negative) segmental interac-
tion energy of the i-i pair and z is the number of
nearest-neighbor monomers in the pure melts. For the
sake of generality, an alternate “off-lattice” derivation
for ∆Emix is also provided in Appendix A1. The dilution
factors F̃i multiplying the self-interaction energy terms
reflect the reduced probability of segmental interactions
in the pure compressible melts compared to the hard
core state (incompressible limit). The interaction energy
in the mixed state can be calculated in a similar fashion,
making use of the classical regular solution model
approximation17 for the cross-interaction energy density
δAB,0

2:

yielding

Again, the dilution factor φiF̃i ) niNivi/V represents the
reduced probability of interacting with a segment of type
i in the compressible mixed state compared to the hard
core state.

From eq 13 and eq 15, a very simple perfect square
is obtained for the change in interaction energy per unit
volume, ∆Emix/V:

Note that, alternatively, eq 16 can be rewritten in a
more transparent form that effectively separates the
compressible and incompressible contributions to the
change in interaction energy:

where δi
2 ) F̃iδi,0

2 is the T- and P-dependent cohe-
sive energy density. Hence, similar to the change in
combinatorial entropy upon mixing, the expression for
the change in interaction energy for the compressible
mixture contains two terms. The first term in eq 16a

is the classical exchange interaction energy, diluted
by the factors F̃i. It can be related back to the
Flory-Huggins interaction energy via the approxima-
tion

The second term in eq 16a, which can be either positive
or negative, arises from the dilution or concentration of
self-interactions (εii) upon mixing. Hence, if component
B is characterized at the same time by a larger free
volume (F̃A > F̃B) as well as stronger self-interactions
(δB

2 > δA
2) than component A, the contraction this

component will undergo upon mixing is energetically
favorable.

Combining eqs 12 and 16a, the total change in free
energy per unit volume, ∆gmix, at atmospheric pressure
(P∆Vmix term ignored) is given by

In this expression, the second entropy term of eq 12 has
been neglected, since it can be readily shown that it is
orders of magnitude smaller than the leading terms.
This yields a simplified expression for ∆gmix, which
contains three terms: the first term is the classical
combinatorial entropy of mixing, while the second term
is the classical regular solution model exchange interac-
tion energy, both diluted compared to the incompressible
limit. The third term arises from the very fact that the
mixture is compressible, thus accounting for equation-
of-state effects. Although common to other compressible
theories developed to date, this extra contribution to the
free energy of mixing has been expressed here as a
function of pure component properties only, namely the
reduced density and cohesive energy density or solubil-
ity parameter. This yields a compressible free energy
expression that can be used as a predictive thermody-
namic tool.

Although written in its simplest form, the free energy
expression of eq 18 does not provide, as is, transparent
expressions for the total changes in entropy, enthalpy,
and volume upon mixing, ∆Smix, ∆Hmix, and ∆Vmix. For
example, the first term of eq 18 is only the combinatorial
part of the change in entropy upon mixing, which should
further include nonideal contributions arising from
compressibility. These total changes per unit volume can
be readily calculated, however, using standard thermo-
dynamic relations.36 Indeed, the total change in entropy
per volume ∆smix can be obtained from the derivative
of ∆gmix with respect to temperature:

Likewise, the fractional change in volume upon mix-
ing, ∆Vmix/V, is obtained from the derivative of the Gibbs
free energy with respect to pressure:

Epure ) nANAvA(12 zεAA

vA
)nANAvA

VA
+

nBNBvB(12 zεBB

vB
)nBNBvB

VB

) -nANAvAδA,0
2F̃A - nBNBvBδB,0

2F̃B (13)
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2
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) δA,0δB,0 (14)

Emixed ) -nANAvAδA,0
2
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2
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2nANAvAδA,0δB,0φBF̃B (15)
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V
) φAφBF̃A
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2 + φAφBF̃B

2δB,0
2 -
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2 - δB
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øFH )
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kT
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2 (17)

∆gmix ) kT[φAF̃A

NAvA
ln φA +

φBF̃B

NBvB
ln φB] +

φAφBF̃AF̃B(δA,0 - δB,0)
2 + φAφB(F̃A - F̃B)(δA

2 - δB
2) (18)
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∂∆gmix
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∆Vmix
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Finally, the change in enthalpy upon mixing per unit
volume, ∆hmix, is simply given by

Approximate expressions for these thermodynamic
quantities at atmospheric (∼zero) pressure are derived
in Appendix A2.

For a compressible binary mixture, phase stability
requires that the system be stable with respect to both
composition and volume fluctuations.4,5,26,33 When the
Gibbs free energy per unit volume is used, this trans-
lates into the following mathematical expression for the
stability condition:26,33

However, since the simplified free energy expression
given by eq 18 only depends on pure component vari-
ables and not on F̃, the second term of eq 22 is equal to
zero. At atmospheric pressure, spinodal temperatures
can thus be readily calculated using the stability
criterion for the mixed state obtained from the following
second derivative of the intensive free energy with
respect to composition:

while at the spinodal, gφφ equals zero.

II. Phase Behavior Predictions and Discussion

II.1. Pure Component Properties. In the next
sections, the stability criterion given by eq 23 is em-
ployed to predict phase behavior for a series of weakly
interacting polymer pairs spanning systems character-
ized by purely dispersive attractions to more polar
homopolymers such as poly(ε-caprolactone), most of
which have been investigated experimentally by other
authors. To do so, the following pure component proper-
ties were determined from experimental P-V-T data32

and group contribution calculations:19 Fi*, F̃i(T,P), and
δi(T,P).

The hard core and reduced densities were obtained
in the following manner. P-V-T data are available in
the literature for many homopolymers over a certain T
range, typically in the form of empirical Tait equation
fits to the specific volume, 1/F (see for example ref 32
which reviews P-V-T properties for 56 homopolymers).
Setting P ) 0 in such fits provides a simulated data set
for F as a function of temperature. The hard core density
and thermal expansion coefficient were computed by
fitting these “data” (or actual data) from the melt-state
regime to the following form:

where a constant Ri (the best fit melt state value) was
used as a first approximation. This procedure yields Fi*
and hence vi ) Mu,i/N0Fi*, the hard core segmental
volume. The reduced density F̃i(T) is then given by the
actual density Fi(T) divided by Fi*. A similar approach
was used to determine the temperature-dependent
solubility parameters. The values of δi(298), calculated
using group contributions according to van Krevelen at
25 °C, were extrapolated to other temperatures in the
following manner:

The homopolymer values of Ri, Fi*, δi(298), and vi used
to compute the spinodal diagrams presented in the
next sections are listed in Table 1. In computing these
spinodal diagrams, homopolymer molecular weights
were chosen to match those used in experimental
studies, thereby allowing for comparison with reported
cloud point curves near the critical point. While the
primary goal of this work was to demonstrate the
qualitative, rather than quantitative, predictive capabil-
ity of the model, these cloud point curves were added
to figures shown below. For those systems for which no
cloud point data are available, homopolymer molecular
weights, taken as equal for the two blend components,
were chosen such that the predicted critical point would
fall within an experimentally accessible T range. It is
important to note that no adjustable parameters were
used to compute any of the diagrams shown in the
remainder of this paper, since Berthelot’s mixing rule
was assumed to calculate the exchange interaction
energy.

II.2. Polystyrene-Based Blends. In this section,
we start by considering six polystyrene-based blends
which have been the subject of extensive experimental
investigation. These include four well-known miscible
pairs: polystyrene/poly(vinyl methyl ether),37-45 denoted
PS/PVME, polystyrene/poly(cyclohexyl methacrylate),46-48

Table 1. Parameters Used for Spinodal Predictions

homopolymer
F*

(g/cm3)
R

(10-4 K-1)
δ(298)

(J1/2/cm3/2)
Navv

(cm3/mol)

PS 1.24 5.13 18.19 83.96
PCHMA 1.36 6.24 18.70 123.48
PVME 1.25 6.65 18.50 46.36
PPO 1.45 7.23 18.90 83.04
PRMSa 1.33 5.76 18.50 86.88
PEMA 1.42 7.47 19.00 80.09
PEA 1.39 7.24 19.56 71.85
PBb 1.06 5.67 16.20 50.98
PIb 1.09 6.51 16.40 62.62
PIBc 1.08 5.65 18.50 51.59
P(E-r-B)66c 1.14 7.10 18.71 49.21
P(E-r-B)97c 1.06 6.78 18.10 52.82
PEd 1.10 8.11 18.50 25.38
PEEd 1.10 7.79 16.47 50.70
PEPd 1.11 8.00 17.80 31.66
PMMA 1.42 5.48 19.65 70.42
PCL 1.32 6.39 19.66 86.64
PC 1.50 6.21 19.47 168.85
SAN6 1.28 5.92 18.6 76.65
SAN18 1.30 5.70 19.52 68.06
SAN40 1.31 5.16 21.57 57.40
PEO 1.38 7.09 21.30 31.79
PVC 1.79 7.40 21.73 35.09
a P-V-T data from ref 52. b P-V-T data from ref 97. c P-V-

T data and solubility parameters from ref 18. d P-V-T data and
solubility parameters from ref 98.

δi
2(T) ) - 1

2
zεiiFi(T)

vi
) δi

2(298)( F̃i(T)

F̃i(298)) (25)

∆hmix ) ∆gmix + T∆smix ) ∆gmix - T
∂∆gmix

∂T |P,φ (21)

gφφ )
∂

2∆gmix

∂φA
2 |T,P )

∂
2∆gmix

∂φA
2 |T,P,F̃ - F̃B(∂2∆gmix

∂F̃ ∂φA
|T,P)2

> 0

(22)

gφφ )
∂

2∆gmix

∂φA
2 |T,P ≈ ∂

2∆gmix

∂φA
2 |T,P,F̃

) kT[ F̃A

φANAvA
+

F̃B

φBNBvB
] - 2F̃AF̃B(δA,0 - δB,0)

2 -

2(F̃A - F̃B)(δA
2 - δB

2) > 0 (23)

Fi(T) ) Fi* exp(-RiT) (24)
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denoted PS/PCHMA, polystyrene/poly(2,6-dimethyl-
phenylene oxide),49-51 denoted PS/PPO, and polystyrene/
poly(R-methylstyrene),52,53 denoted PS/PRMS. Even
though these four blends form homogeneous mixtures
over extended temperature ranges even for reasonably
large homopolymer molecular weights, they differ in
that the first three systems phase separate upon heating
through a LCST, while the latter only exhibits UCST-
type phase behavior at experimentally accessible tem-
peratures. Both the large degree of thermodynamic
compatibility and the respective trends in phase behav-
ior reported for each of these four systems are success-
fully captured by the predicted spinodal curves shown
in Figure 2a-d. Hence, PS/PVME, PS/PCHMA, and PS/
PPO are predicted to display both LCST- and UCST-
type transitions, although the extremely low tempera-
ture of the latter prevents its experimental observation.
In contrast, PS/PRMS is correctly predicted to just
display UCST-type phase behavior, only observable for
high molecular weights. Spinodal diagrams were also
calculated for two well-known immiscible PS-based
blends, namely, PS/polybutadiene54 (PS/PB) and PS/
polyisoprene55 (PS/PI), shown in Figure 2e,f. Although
the model tends to overestimate their degree of incom-
patibility, the thermodynamics of these systems is also
successfully captured. Hence, UCST-type spinodals are
predicted, only observable at experimentally accessible
temperatures for very low molecular weights of these
immiscible components (∼2000 g/mol).

The qualitative agreement between the calculated
spinodal diagrams shown in Figure 2 and the experi-
mentally observed phase behavior is excellent, implying
that the compressible regular solution model presented
here is predictive for these weakly interacting systems.
Moreover, computing the relations for ∆smix and ∆hmix
according to eq A2.3 and eq A2.5 of Appendix A2 clearly
reveals the drastically different thermodynamic origin
of the two types of transitions observed in these blends.
This is illustrated in Figure 3, where ∆gmix, ∆hmix, and
T∆smix are given as a function of temperature for the
100K/100K blend of PS and PCHMA containing 50% PS.
Thus, phase separation (demixing) upon cooling through
the enthalpically driven UCST is, as anticipated, ac-
companied by a favorable decrease in the blend enthalpy
(∆hmix > 0, ∆hdemix < 0) and unfavorable, but smaller
in magnitude, decrease in the blend entropy (∆smix > 0,
∆sdemix < 0). In contrast, phase separation upon heating
through the entropically driven LCST is accompanied
by a favorable increase in the blend entropy (∆smix < 0,
∆sdemix > 0) and unfavorable, but smaller in magnitude,
increase in the blend enthalpy (∆hmix < 0, ∆hdemix > 0).
The increase in the system entropy upon phase separa-
tion at high temperatures through the LCST in these
miscible blends is, as expected, also accompanied by
a small volume expansion since a negative ∆Vmix/V of
∼- 2 × 10-4 to -8 × 10-4 is computed using eq A2.4 of
Appendix A2. This is again illustrated for the PS/
PCHMA pair in Figure 4a-c, where ∆Vmix/V, ∆gmix,
∆hmix, and T∆smix are shown, this time as a function of
composition and for two temperatures, above (673 K)
and below (523 K) the LCST, respectively.

More importantly, when applied to the series of blends
considered in Figure 2, the model further provides a
very simple explanation for the molecular origin of
phase behavior in each of these weakly interacting
systems. Indeed, whenever the exchange interaction
energy scaling as (δA,0 - δB,0)2 is large, which is the case,

e.g., for styrene and isoprene, the second term of eq 18
governs the free energy of mixing, and the system
displays classical UCST-type phase behavior. The actual
transition, however, is only observable for low molecular
weights where the small combinatorial entropy of mix-
ing (first term of eq 18) overcomes the unfavorable
enthalpic interactions between the unlike segments. In
contrast, when the exchange interaction energy is small,
i.e., whenever the two weakly interacting components
have sufficiently similar solubility parameters17 or mass
densities,56 the third term of eq 20 tends to govern the
free energy of mixing and its variation with tempera-
ture. At low temperatures and under certain conditions,
this contribution to the free energy, which arises from
differences in the pure components’ free volumes and
cohesive energy densities, can be negative, promoting
mixing. This favorable situation arises whenever the
more cohesive (larger δ) homopolymer is also the one
with a larger degree of free volume (lower F̃) and larger
thermal expansion coefficient R. At low temperature, the
contraction this component undergoes upon mixing is
accompanied by an energetically favorable strengthen-
ing of its self-interactions. Upon heating, however, the
cohesive energy density of this component decreases at
a faster pace than that of the second component, due to
its larger R. Given this difference in pure component
thermal expansion coefficients, there is always a tem-
perature above which the third term of eq 18 becomes
positive, destabilizing the mixed state. This temperature
is greatly dictated by the relative magnitude of the two
components’ thermal expansion coefficients, being low-
est for the largest differences. Besides the requirement
that the exchange interaction energy (δA,0 - δB,0)2 be
small enough, a second condition for the experimental
observation of the LCST, i.e., at an experimentally
accessible temperature, is thus recovered:5 the two
homopolymers must have sufficiently different thermal
expansion coefficients. Indeed, if these parameters are
too similar, the LCST lies at a temperature exceeding
by far the degradation temperature of the polymer
components. Such a difference in thermal expansion
coefficients is found for blends of PS (RPS ) 5.3 × 10-4

K-1) and several chemically distinct homopolymers with
which it is reported miscible, namely, PVME (RPVME )
6.65 × 10-4 K-1), PCHMA (RPCHMA ) 6.24 × 10-4 K-1),
and PPO (RPPO ) 7.2 × 10-4 K-1), but also poly-
(cyclohexyl acrylate), PCHA, poly(tetramethyl carbon-
ate) (TMPC), etc. In contrast, the chemically similar
PS and PRMS homopolymers have thermal expansion
coefficients of comparable magnitude: 5.13 × 10-4 and
5.76 × 10-4 K-1, respectively. Consequently, in this case,
the third term of eq 18 not only is smaller in magnitude
but also becomes positive only at extremely high tem-
peratures, ruling out the experimental observation of
an inverted coexistence curve for this compatible sys-
tem. Instead, the competition between a small positive
exchange interaction energy (second term of eq 18) and
a small negative contribution from EOS effects (third
term of eq 18) results in the reported low-T UCST-type
phase behavior.

II.3. Chemically Similar Blends. To better illus-
trate these considerations, the predicted phase behavior
of two other chemically similar blends is presented here.
Although miscibility might typically expected for these
blends, both types of phase behavior (LCST or UCST)
are in fact observed, depending on the particular
polymer pair. Hence, similar to the PS/PRMS system,
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blends of poly(ethyl methacrylate), PEMA, and poly-
(ethyl acrylate), PEA, are reported to display UCST-
type behavior, though with a much lower degree of
thermodynamic compatibility.57 This trend is success-
fully predicted in the spinodal diagram shown in Figure
5a. In contrast, LCST-type spinodal behavior is pre-
dicted for the polybutadiene/polyisoprene (PB/PI) pair,
as shown in Figure 5b. Such behavior was in fact
recently reported for a 450 000 (450K) g/mol block
copolymer of these two components containing 31 wt %
PB, which displays a lower disorder/order transition
(LDOT) at ∼135 °C.58

Interestingly, the common difference between the two
components in each of these systems is the replacement
of a hydrogen atom by a methyl (CH3) group. For the
PS/PRMS or PEA/PEMA pairs, this small chemical
variation is accompanied by a modest (∼3-5%) increase
in the thermal expansion coefficient (RPS ) 5.13 and
RPRMS ) 5.76 × 10-4 K-1, RPEA ) 7.24 and RPEMA ) 7.47
× 10-4 K-1). In contrast, the extra CH3 in polyisoprene
results in a much larger (15%) value of R compared to
that of polybutadiene (RPB ) 5.67 and R PI ) 6.56 × 10-4

K-1). In the context of the compressible regular solution
model presented here, this subtle effect of monomer

Figure 2. Predicted spinodal diagrams and experimental cloud points for blends of (a) PS/PCHMA, (b) PS/PVME, (c) PS/PPO,
(d) PS/PRMS, (e) PS/PB, and (f) PS/PI. The homopolymer molecular weights corresponding to each spinodal or experimental
cloud point curve are indicated as follows: XK ) X000 g/mol.
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structure on pure component P-V-T properties natu-
rally translates into a tendency for this system to phase
separate upon heating.

II.4. Polyolefin Blends. In light of the results
presented so far, the explanation for some unusual
experimental observations on blends consisting entirely
of saturated polyolefins such as polyethylene, poly-
propylene, polyisobutylene, polybutene, etc., becomes
transparent. Owing to their commercial importance,
polyolefin blends have been the subject of extensive
experimental18,59-67 and theoretical23,68-77 investiga-
tions, which have unveiled important effects of monomer
structure on blend thermodynamics. While most such
blends phase separate upon cooling through a classical
UCST, some remarkable exceptions have been identi-
fied,63,67 one of which is the reported LCST for most
blends of polyisobutylene (PIB) with other saturated
polyolefins.63 Using eq 18, however, the “anomalous”
LCST for blends involving PIB becomes predictable and
entirely explicable. Indeed, experimental P-V-T data18,32

show that PIB is characterized by a very small thermal
expansion coefficient (RPIB ∼ 5.65 × 10-4 K-1) compared
to most other saturated polyolefins (R ∼ (7-8) × 10-4

K-1). Again, this provides the right conditions for LCST
behavior in blends involving this homopolymer and
other saturated polyolefins with comparable solubility
parameters and mass densities. Examples of such
components include head-to-head polypropylene (hhPP)
as well as certain random copolymers of ethylene and
butene, denoted P(E-r-B), obtained upon hydrogenation
of polybutadiene. The predicted spinodal diagrams for
blends of PIB and two P(E-r-B) containing 66 and 97
wt % of butene, respectively, are shown in Figure 6a.
Experimentally, it is found that, while the former is
miscible at room temperature and displays a LCST at
∼100 °C for MwPIB ∼ 81 000 (81K) g/mol and MwP(E-r-B)66
∼ 114 000 (114K) g/mol (Mw ) weight-average molec-
ular weight), the latter is always phase separated at
25 °C and higher temperatures, even for molecular
weights of Mw ∼ 50 000 (50K) g/mol.63 These thermo-
dynamic trends are well captured by the phase dia-
grams of Figure 6a, where the LCST's of 70K/70K and
81K/114K blends of PIB/P(E-r-B)66 and a 13K/13K
blend of PIB/P(E-r-B)97 are shown. Interestingly, the
actual transition in PIB/P(E-r-B)97 is predicted to lie
below room temperature even for low molecular weights

of these components, correlating well with the experi-
mental observation of immiscibility at all temperatures
for this system.

In contrast to the systems involving polyisobut-
ylene, blends64 and block copolymers78,79 of polyethylene
and various branched polyolefins such as poly(ethyl-
ethylene), PEE, and poly(ethylenepropylene), PEP, are
typically incompatible and exhibit phase separation
upon cooling through a classical UCST observable for
small to intermediate homopolymer molecular weights.
The thermodynamic trends of these more classical
systems are also successfully predicted by the computed
diagrams shown in Figure 6b-d for PE/PEE, PEE/
PEP, and PE/PEP blends. For the sake of comparison
and in the absence of blend cloud point data, upper
disorder/order transitions (UDOT) measured by Bates
and co-workers on symmetric block copolymers of these
three systems are also shown. Within the framework
of the random phase approximation (RPA),20 these
roughly correspond to “equivalent cloud points” for
blends of homopolymers of molecular weight Mn ∼
Mn,block copolymers/5.25. Although no quantitative agree-
ment is claimed, note that the model also correctly
predicts the order of increasing miscibility among these
three systems.

II.5. PMMA, PC, and PCL-Based Blends. In this
section, we further apply eq 18 to blends involving more
polar homopolymers such as poly(methyl methacrylate)
(PMMA), poly(ε-caprolactone) (PCL), and polycarbonate
(PC). The compatibilization of PS with each of these
homopolymers through random copolymerization of
styrene with a more cohesive monomer such as acrylo-
nitrile (AN) has been extensively investigated.80-86 For
example, it is well-known that PMMA is miscible with
styrene/acrylonitrile random copolymers, denoted SAN,
containing 10-38 wt % acrylonitrile, and the corre-
sponding blends phase separate upon heating through
the LCST.80-82 When the SAN copolymers contain less
or more AN, however, immiscibility and the classical
UCST behavior are recovered. Parts a and b of Figure
7 show the predicted spinodal diagrams for blends of
PMMA and three SAN copolymers containing 6 (SAN6),
18 (SAN18), and 40 wt % acrylonitrile (SAN40), respec-
tively. For comparison, experimental cloud points, only
available for highly polydisperse PMMA/SAN18 blends
of molecular weights Mw,PMMA ∼ 105 000 (105K) g/mol
and Mw,SAN18 ∼ 180 000 (180K), are also shown. For 18
wt % AN, which is within the reported miscibility
window, the model correctly predicts a large degree of
thermodynamic compatibility and both a LCST and a
UCST, although only the former lies in an experimen-
tally accessible T range. In contrast, both PMMA/SAN6
and PMMA/SAN40 are predicted to be immiscible and
to exhibit UCST-type phase behavior, only observable
for very low molecular weights of these components
(7000 and 3000 g/mol, respectively), in accord with
experimental observations. Similar miscibility windows
spanning 8-28 and ∼15-25 wt % AN, respectively,
have been reported for blends of PCL/SAN83,84 and
PC/SAN.85,86 These trends are also successfully pre-
dicted, as seen in the spinodal diagrams shown in
Figure 7c-f.

Marginal compatibility and the LCST are also pre-
dicted for intermediate molecular weight (50 000 or 50K
g/mol) blends of PMMA and PC, as shown in Figure 8a.
Although actual cloud point temperatures are not
reported, this is in excellent agreement with experi-

Figure 3. Changes in Gibbs free energy, ∆gmix, enthalpy,
∆hmix, and entropy, ∆smix, per unit volume as a function of
temperature for a 100K/100K PS/PCHMA blend containing
50% PS.
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mental studies on this polymer pair, which indicate that
the LCST of this blend lies below the glass transition
of PC (147 °C) for most commercial molecular weights
(Mw g 100 000 g/mol).87-89 A similar type of phase
behavior, also shown in Figure 8a, is further predicted
for blends of PMMA and PCL. Again, the LCST arises
in these systems from a small exchange interation
energy (second term of eq 18) combined with a sizable
difference in the thermal expansion coefficients of PC
and PCL (6.21 and 6.39 × 10-4 K-1, respectively)
compared to that of PMMA (5.48 × 10-4 K-1). Moderate

miscibility is also predicted for blends of PMMA and
poly(ethylene oxide) (PEO), although accompanied by
a UCST-type phase behavior for ∼25 000 (25K) g/mol
blends of these components. Despite the higher degree
of thermodynamic compatibility observed experimen-
tally, the prediction shown in Figure 8b correlates well
with the SANS studies of Hopkinson and co-workers.
Indeed, these authors reported a decrease in scattering
intensity and hence, in the SANS-derived ø parameter,
with increasing temperature for PMMA/PEO blends,
indicative of UCST-type behavior.90 Earlier, however,
Russell and co-workers also investigated this polymer
pair with SANS but reported a roughly constant ø across
the whole T range.91

II.6. Strongly Interacting Systems. Surprisingly
good predictions of phase behavior were obtained for all
the systems considered so far using eq 18, which was
derived assuming a geometric rule of mixtures for the
cross-interaction energy term. This indicates that strong
specific interactions do not necessarily need to be
invoked to explain the thermodynamics of these sys-
tems, even for the more polar systems presented in the
last section. This is in contrast, however, to blends
involving poly(vinyl chloride), PVC, as well as poly-
(vinylidene fluoride), PVF2. Indeed, Berthelot’s mixing
rule predicts large positive exchange interaction ener-
gies (second term of eq 18) and immiscibility for blends
of these homopolymers with PMMA, while their misci-
bility even for high molecular weights has been reported
by several authors.37,92-95 Hence, out of the 25 systems
considered in this work, the latter two appear to be the
only ones for which a simple geometric average for the
cross-interaction energy is wholly unsatisfactory.

Conclusion

A phenomenological free energy expression was de-
rived for compressible polymer mixtures, which extends
the classical regular solution model to account for
compressibility. This model was derived in a similar
fashion as the well-known Flory-Huggins theory, as-
suming random mixing (mean field approximation).
However, in deriving expressions for the change in
combinatorial entropy and interaction energy, the free
volumes of the pure components and the mixture,
defined as the difference between the total and hard core
(0 K, zero pressure) volumes, were accounted for. The
ability of the model to predict qualitative phase behavior
as a function of temperature was demonstrated for
homopolymer blends of 23 polymer pairs. Spinodal

Figure 4. Fractional change in volume on mixing, ∆Vmix/V, as a function of composition for 100K/100K PS/PCHMA blend at T
) 523 K < TLCST ) 600 K and T ) 623 K > TLCST (a) and corresponding changes in Gibbs free energy, enthalpy, and entropy per
unit volume as a function of composition at (b) 523 K and (c) 623 K.

Figure 5. Predicted spinodal diagrams and experimental
cloud points for blends of (a) PEMA/PEA and (b) PB/PI. (*)
data for 450K PB/PI block copolymer containing 31 wt % PB.58
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diagrams were calculated for each of these systems,
which correlate predictively with their reported phase
behaviors. Moreover, surprisingly good quantitative
agreement with experimental cloud points near the
critical point was obtained, considering that no adjust-
able parameters were used for the predictions. In
computing these spinodal diagrams, the following as-
sumptions were made:

1. The classical regular solution model approximation
(Berthelot’s mixing rule) was used for the cross-interac-
tion energy density.

2. Hard core and reduced densities of the pure
components were obtained by extrapolating experimen-
tal P-V-T data to 0 K at 0 pressure (hard core state)
assuming constant thermal expansion coefficients taken
from the melt state.

3. Solubility parameters were obtained using group
contributions according to van Krevelen.

The success of eq 18 in predicting phase behavior for
so many different polymer pairs, with no adjustable
parameters, is a highly encouraging result. Although
not attempted here, this compressible regular solution
model might also be useful in capturing the phase
behavior of block copolymers, ternary and multicompo-
nent blends, block copolymer/homopolymer blends, and
possibly polymer solutions, organic small molecule
mixtures, or even inorganic mixtures and alloys. In this
paper, phase diagrams were only calculated for polymer

blend systems for which accurate P-V-T data on the
pure components was available in the literature. Pro-
vided such data could be measured or simulated,
however, we expect that qualitatively accurate phase
diagrams could be predicted for numerous additional
weakly interacting polymer pairs, including other exist-
ing or yet to be studied homopolymer/random copolymer
systems besides those based on SAN. One caveat,
however, is that while the regular solution model
presented here successfully predicts the phase behavior
of all the weakly interacting systems considered, er-
roneous predictions were obtained for systems charac-
terized by stronger specific interactions. PMMA/PVC
and PMMA/PVDF were given as two examples of such
blends. It is expected that other systems involving
strong interactions such as H-bonding and electrostatic
interactions would also be poorly described with the
model as presented. However, these failures, we believe,
mainly point to the inadequacy of a geometric average
for cross-interaction energies, rather than a failure of
the compressible regular solution model per se, at
capturing the thermodynamics of these systems.

Toward the goal of improved quantitative phase
diagram predictions, perhaps the most limiting assump-
tion of the list above is that of constant thermal
expansion coefficients in extrapolating P-V-T data.
While, qualitatively, the predicted phase diagrams and
trends in thermodynamic compatibility are unexpect-

Figure 6. Predicted spinodal diagrams and experimental cloud points for blends of (a) PIB/P(E-r-B)X, where X is the wt % of
butene in the ethylene-butene random copolymer, (b) PE/PEE, (c) PEE/PEP, and (d) PE/PEP. (*) Data for 27K (PE/PEE), 57K
(PEE/PEP), and 93K (PE/PEP) symmetric block copolymers.78,79
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edly good, the strong dependence of predicted spinodal
temperatures on the values of R suggests that recon-
sidering this assumption might yield better quantitative
agreement with experimental spinodal curves. The
sensitivity of the extrapolated values of the hard core
parameters and resulting reduced densities on the
numerical value of R further supports these conclusions.
Besides polydispersity effects, which were not taken into
account in the model, another potentially important
source of deviations between predictions and experi-
ments is the use of simple group contribution calcula-
tions for the evaluation of pure component cohesive
energy densities. Indeed, the strong sensitivity of solu-

bility parameter calculations on the particular formal-
ism chosen tends to complicate their use as a quanti-
tative tool. Along these lines, a highly attractive
alternative avenue to obtain the pure component ther-
modynamic parameters necessary for phase diagram
predictions using eq 18 or 23 might consist of molecular
dynamics and energy minimization simulations. Indeed,
Choi et al.96 recently reported on the use of the com-
mercial software Cerius in combination with the force
field UNIVERSAL to simulate the density, cohesive
energy density and hard core (0 K) parameters of PS
and PVME. These simulated densities and cohesive
energy densities, obtained from hypothetical polymer

Figure 7. Predicted spinodal diagrams and experimental cloud points for blends of (a, b) PMMA/SANXX, (c, d) PCL/SANX, and
(e, f) PC/SANX. In these figures, SANX refers to a styrene/acrylonitrile random copolymer containing X wt % acrylonitrile.
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chains of as little as 20 segments, were found to be in
good agreement with experimentally determined values
as well as those obtained from GC calculations. The
advantage of this procedure clearly lies in its predictive
nature, thereby allowing one to estimate the thermo-
dynamic properties of new and yet to be synthesized
polymers, including random copolymers of various
compositions. Moreover, this approach might also yield
hard core parameters with improved physical meaning
in comparison with the extrapolated values used in this
work. The potential use of these simulations in combi-
nation with the free energy model derived here is
currently being investigated.

Finally, besides its use as a simple thermodynamic
tool for phase behavior predictions, the phenomeno-
logical model derived here further provides a simple
explanation for the molecular origin of the inverted
coexistence curve (LCST) in compatible polymer blends,
solutions, or block copolymers. Indeed, provided the
exchange interation energy (second term of eq 18) is
small enough, which is achieved for weakly interacting
polymer pairs with similar solubility parameters, phase
separation upon heating naturally arises from small
differences in free volumes and cohesive energy densi-
ties between the two components and their increase
with rising temperature due to a difference in thermal
expansion coefficients. While this concept naturally
emerged from most compressible theoretical treatments
of polymer thermodynamics, starting with the work of
McMaster in 1973,5 a simple and predictive mathemati-

cal expression in terms of pure component properties
only is proposed here for the first time.
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Appendix A1
In eq 16, ∆Emix may be alternately derived without

reference to a lattice by assuming a van der Waals
interaction potential wij(r) between monomers i and j
separated by a distance r, to take the form wij(r) ) -Cij/
r6, where Cij is the vdW energy coefficient, having units
of energy × vol2. The total interaction energy Eij for niNi
monomers of i interacting with njNj monomers of j in a
volume V is given by100

where Fj′(r) is the local number density of j segments,
σij is an averaged segment hard core diameter, and the
system is assumed to be isotropic. Invoking the mean-
field approximation Fi′(r) ) niNi/V, and further assum-
ing that Cij ) (CiiCjj)1/2 and σij ) (σiiσjj)1/2, the integral
in eq A1.1 yields

The total interaction energy for the pure state is
therefore

Noting that F̃i ) niNivi/Vi and identifying the 0 K
cohesive energy density of each component as

we can rewrite eq A1.3 as

which is identical to eq 13. Similarly, the mixed state
energy is given by

Figure 8. Predicted spinodal diagrams for (a) PMMA/PC and
PMMA/PCL blends and (b) PMMA/PEO blends.

Eij ) ∑
i,j

niNi

2
∫σij

∞
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Setting φiF̃i ) niNivi/V and δAB,0
2 ) δA,0δB,0 we obtain

which is equivalent to eq 15. The change in interaction
energy upon mixing is then calculated as ∆Emix ) Emixed
- Epure.

Appendix A2
From the free energy expression given by eq 18, the

changes in entropy, enthalpy, and volume upon mixing
are readily obtained using standard thermodynamic
relationships. To this end, we still assume constant R’s
and further ignore the negligible variation of the volume
fractions φi with T and/or P. Hence, the only T- and
P-dependent parameters in eq 18 are the reduced
densities and cohesive energy densities, for which

where âi is the isothermal compressibility of component
i.

Using these relations yields the following expressions
for ∆smix and ∆Vmix/V, the change in entropy on mixing
per unit volume and the fractional change in volume
on mixing:

and

The change in enthalpy upon mixing per unit volume,
∆hmix, is then readily obtained since
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